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AbstractÐAlthough many ductile shear zones are supposed to have developed by approximately simple shear
¯ow, some must have formed under di�erent conditions. A few types of such `non-simple shear zones' have
been proposed in the literature such as transpression-, transtension- and stretching-shear zones. This paper
presents a full three-dimensional kinematic model of shear zones with monoclinic ¯ow geometry. Monoclinic
shear zone types can be classi®ed according to ¯ow parameters, and according to the geometry and orientation
of accumulating ®nite strain. Modelling of ®nite strain accumulation shows that a number of unusual and po-
tentially problematic structural features may develop in monoclinic shear zones. These include stretching linea-
tions normal to the displacement direction; foliations normal to the shear zone boundary; switching of the
position of principal ®nite strain axes X, Y and Z during progressive deformation; and strain gradients along
shear zones that may give rise to obliqueness of fabric elements of the same age in adjacent rock volumes. #
1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

The literature on ductile shear zones is mostly con-
cerned with the geometry of zones from the upper
crust, formed under greenschist to lower-amphibolite
facies conditions. Many of these shear zones appar-
ently formed by simple shear progressive deformation
in planar zones with a rigid wall rock (Fig. 1a).
Development of fabrics in such `simple shear zones' is
relatively well understood (cf. Ramsay, 1980; Ramsay
and Huber, 1983). However, progressive deformation
histories other than simple shear (cf. Simpson and
DePaor, 1993) may operate in ductile shear zones with
deforming wall rocks, especially at high-grade meta-
morphic conditions; the most commonly cited types in
the literature are transpression-, transtension-, stretch-
ing- and shortening-shear zones (Fig. 1; Harland,
1971; Sanderson and Marchini, 1984; Klig®eld and
Crespi, 1984; Means, 1989; Paterson and Wainger,
1991; Fossen and Tiko�, 1993; Krantz, 1995; Jones
and Tanner, 1995; Jiang and White, 1995; Tiko� and
Greene, 1997; Jones et al., 1997). Most of these shear
zone models are based upon speci®c ¯ow types with a
monoclinic symmetry in the absence of volume change.
In this paper, I wish to explore all possible monoclinic
¯ow types to see what ®nite strain fabrics could result,
and how this could a�ect fabrics in planar shear zones
that operate by monoclinic ¯ow types. Although this is
largely a theoretical exercise, the results may be appli-
cable to segments of shear zones where ¯ow and defor-
mation were approximately homogeneous (Figs 1 & 2).

MONOCLINIC FLOW

In any type of homogenous ¯ow, three orthogonal
axes can be de®ned that are known as the instan-

taneous stretching axes (ISA; Passchier, 1991); two of
these axes represent directions of maximum and mini-
mum stretching rate of material lines (Lister and
Williams, 1983; Passchier, 1988). In this paper, the
ISA are de®ned as vectors aI, aII and aIII where aI, aII
and aIII are the magnitudes of stretching rates of ma-
terial lines instantaneously parallel to ISA (Fig. 2).
Throughout this paper, the ISA are described as ®xed
in orientation in an external reference frame, but shear
zone boundaries and ®nite strain axes may be rotating
in this reference frame (Fig. 2). The value of aII>aIII
by de®nition to avoid duplication of mirror-image ¯ow
types. In an external reference frame in which ISA are
®xed, material lines that are instantaneously parallel to
ISA can either remain parallel to them (coaxial ¯ow)
or rotate with respect to ISA and the external refer-
ence axes (non-coaxial ¯ow). The rotational com-
ponent of ¯ow can be described by a vorticity vector w
which need not be parallel to any ISA. In this paper,
¯ow in model shear zones has a monoclinic symmetry
with w parallel to aI (Fig. 2); w is the sum of the angu-
lar velocity of material lines instantaneously parallel to
aII and aIII (Passchier, 1997).

Any type of monoclinic ¯ow can be fully de®ned by
the four numbers aI, aII, aIII and w. Alternatively,
three normalised, dimensionless numbers Wn, An and
Tn can be used to describe the geometry of monoclinic
¯ow (Passchier, 1997). This has the advantage that
¯ow types can be compared without reference to absol-
ute particle velocities or stretching rates. The numbers
are de®ned as the sectional kinematic vorticity number

Wn � w

2_s
� w

aII ÿ aIII
; �1�

the sectional kinematic dilatancy number

An � aII � aIII
2_s

� aII � aIII
aII ÿ aIII

�2�
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and the sectional kinematic extrusion number

Tn � aI
2_s
� aI

aII ÿ aIII
�3�

sÇ is the mean stretching rate:

_s � aII ÿ aIII
2

: �4�

The sum of Tn and An is Vn, the kinematic volume
change number

Vn � Tn � An � aI � aII � aIII
2_s

� aI � aII � aIII
aII ÿ aIII

�5�

In monoclinic ¯ow with ISA ®xed in an external refer-
ence frame, up to three axes can be found where ma-
terial lines do not rotate with respect to this reference

frame; the ¯ow eigenvectors d, e and f (Fig. 2;
Passchier, 1997).The eigenvectors d and e are symme-
trically arranged with respect to the ISA aII and aIII,
but not orthogonal except in coaxial ¯ow where they
coincide with the ISA aII and aIII (Fig. 2). The eigen-
vector f is unusual in that it is identical to one of the
ISA, aI. The eigenvectors d, e and f, also known as
`¯ow apophyses' (Ramberg, 1975), play an important
role in fabric accumulation and the classi®cation of
shear zones, as outlined below. Since aII>aIII by de®-
nition, erd in any monoclinic ¯ow type (Passchier,
1991). In monoclinic ¯ow as presented in this paper,
either e or f can be an attractor of material lines (ML-
attractor; Passchier, 1997).

CLASSIFICATION OF MODEL SHEAR ZONES
BY FLOW TYPE

In this paper, ¯ow in model shear zones is homo-
geneous and the boundary to the wall rock is a coher-
ent interface. Even though ¯ow in the zone is de®ned
to have monoclinic symmetry, described by Wn, An

and Tn, the shear zone itself will only have a monocli-
nic geometry if the shear zone boundary is parallel to
the aI±f±w axis (Fig. 2). If the shear zone boundary
should remain irrotational in the external reference
frame and with respect to ISA of ¯ow in the zone, it
must be parallel to either d or e as well, and ¯ow geo-
metry should not change with time. Thus, two types of
`irrotational' monoclinic model shear zones can be
de®ned, with boundaries parallel to f and d (df-shear
zones), or to f and e (ef-shear zones) (Fig. 3a & b).
Most published shear zone models classify as ef or df-
shear zones (e.g. Ingles, 1983; Sanderson and
Marchini, 1984; Weijermars, 1991; Fossen and Tiko�,
1993; Tiko� and Fossen, 1993; Krantz, 1995).

Fig. 1. Di�erent types of three-dimensional model shear zones as
described in the literature. Further explanation in the text.

Fig. 2. Model shear zone and inset showing the orientation of ¯ow and strain axes mentioned in the text. aI, aII , aIIIÐ
instantaneous stretching axes. These are permanently ®xed parallel to coordinate axes of an external reference frame as
indicated. wÐvorticity vector. d, e and fÐ¯ow apophyses (eigenvectors). The orientation of principal ®nite strain axes
is labelled AI, AII and AIII. AII and AIII lie in one plane with aII, aIII, d and e. Since ¯ow in the zone has a monoclinic
symmetry, aI, f, w and AI are all parallel. f and aI are identical. In most ¯ow types, AII and AIII rotate in the external

reference frame.
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In simple shear zones, the relative displacement
direction of the rigid wall rocks parallel to shear zone
boundaries can be referred to as the `shear direction'
or `direction of tectonic transport'. In model shear
zones with deforming wall rocks described in this
paper the `displacement direction' is de®ned as a vec-
tor parallel the shear zone boundaries that traces the
o�set of a marker line drawn normal to the boundaries
at the onset of deformation (Fig. 3).

Classi®cation of df- and ef-shear zones

df- and ef-shear zones can be classi®ed according the
geometry of ¯ow in the zone as expressed by the par-
ameters Wn, Tn, An and Vn. Figure 4(a) is an example
of a diagram that represents Wn±An±Tn space, and in
which each monoclinic ¯ow type can be presented by a
point (Passchier, 1997). Flow types with the same rela-
tive volume change rate (Vn) plot on planes dipping to
the right (Fig. 4b & c). Further subdivision is possible
by considering the properties of ¯ow apophyses.

Flow apophyses can be divided into three types:
those along which material lines instantaneously
extend, shorten, or remain constant in length (Fig. 5a,
inset). Monoclinic isochoric ¯ow (Vn=0) in df- and ef-
shear zones can be classi®ed into 17 types according to
combinations of the three types of apophyses, as illus-
trated in Fig. 5(a) on a planar section through Wn±
An±Tn-space for Vn=0 (the right-dipping plane in
Fig. 4a). In contrast to Vn-sections shown in Fig. 4(c),
the plane in Fig. 5(a) is composed of two halves, each
with 0 < WnR1 and corresponding to either df- or ef-
shear zones. Circular curves in Fig. 5(a) represent
special positions where material lines along the apo-
physes d or e are not deforming. This occurs at

W2
n � A2

n � 1 �Passchier; 1991; 1997�: �6�
In Wn±An±Tn space, equation (6) de®nes a cylindrical
surface parallel to the Tn axis (Fig. 4a).

The circular curves and the Wn=1 and An=Tn=0
lines on the Vn=0 plane can be used to classify mono-
clinic shear zone types (Fig. 5b±d). A subdivision into
laterally expansional-, plane strain- or laterally con-
strictional model shear zones (Fig. 5b) refers to devi-
ations from plane strain ¯ow in the zone.
Transpressional-, transtensional-, stretching-, shorten-
ing and simple shear model shear zone types (Fig. 1)
all plot on just two curves (Fig. 5c±d). Transpressional
(TP)- and transtensional (TT) model shear zones
(Figs 1 & 5c) develop by non-plane strain ¯ow in the
zone (positive or negative stretching rate along the
apophysis f) but with zero stretching rate along either
d (df-zones) or e (ef-zones) (e.g. Sanderson and
Marchini, 1984). The terms `thinning' and `thickening'
(Fig. 5c) have a broader signi®cance and refer to all
ef- or df-model shear zones that are instantaneously
decreasing or increasing in width (cf. Jones et al.,
1997). Stretching (ST)- and shortening (SH) model
shear zones (Figs 1 & 5d) develop by plane strain ¯ow
in the zone (zero stretching rate along the apophysis f)
but with positive or negative stretching rate along
either d or e in the shear zone boundary (Coward,
1976; Ramsay, 1980; Klig®eld et al., 1981; Sanderson,
1982; Sanderson and Marchini, 1984; Means, 1989;
Klig®eld and Crespi, 1984; Paterson and Waingler,
1991; Jones et al., 1997). The more general terms `elon-
gating' and `contracting' (Fig. 5d) refer to all ef- or df-
model shear zones with positive or negative stretching
rate along either d (df-zones) or e (ef-zones), without
the restriction of plane strain ¯ow. It is obvious from
Fig. 5 that even within the restricted group of isocho-
ric df- and ef-shear zones, the number of possible
shear zone types is much greater than the model types
presently described in the literature.

Although all model shear zone types in Fig. 5 are
geometrically possible, not all types may develop in
nature and some may even be dynamically impossible.
Unfortunately, very little is known about ¯ow types

Fig. 3. Diagrams showing initial (top) and ®nal (bottom) stages in
the development of ef- and df-shear zones. The grey line on the front
of the diagrams is a marker line used to illustrate the concept of
displacement direction. f, d and e are ¯ow apophyses in the shear
zone. (a) ef-shear zone, where the shear zone boundary is parallel to
f and e. (b) df-shear zone, where the shear zone boundary is parallel

to f and d.
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and ¯ow history in natural shear zones. Numerical
modelling and analogue experiments may help to
determine which of the shear zone types presented in
Fig. 5 are feasible.
If instantaneous volume change accompanies the

development of df- and ef-shear zones, the zones will
plot in other Vn sections of Wn±An±Tn space (Fig. 4c)
than those of Fig. 5. Figure 6 gives two examples of
sections for Vn=0.5 (progressive volume increase) and
ÿ0.5 (progressive volume decrease). The ®elds of shear
zone types shown in Fig. 5(a) change in size, simple

shear disappears and new shear zone types appear
near the centre of the diagram (Fig. 6). The lateral
expansional and constrictional ®elds of Fig. 5(b) shift
vertically in Fig. 6, but the boundaries between thin-
ning- and thickening- (Fig. 5c), or between contract-
ing- and elongating-shear zone types (Fig. 5d) do not
change.

Summarising, monoclinic model shear zones can be
classi®ed according to the orientation of the shear
zone boundary with respect to d or e, and according
to the ¯ow type in the zone, either precisely by three

Fig. 4. (a) Wn±An±Tn-space in which each monoclinic ¯ow type can be plotted as a point. The ornamented cylindrical
surface with vertical axis is the set of all ¯ow types where material lines along one of the apophyses d or e have zero
stretching rate, including transtension and transpression. The horizontal plane is the set of plane-strain ¯ow types. The
plane sloping to the right is the set of isochoric ¯ow types (no instantaneous volume change). The left-dipping planes a
and g and cylindrical surface b separate domains where ®nite strain accumulation by steady-state ¯ow leads to di�erent
®nite strain classes. Only the lower parts of a, b and g are shown. (b) Vertical section through (a) normal to the Wn-axis
at Wn=0, showing the intersection with planes of ¯ow types with speci®c Vn-values and with planes a and g. Two verti-
cal lines at An=ÿ 1.0 and 1.0 mark the intersection with the vertical cylinder in (a). (c) Plane view on the Vn-planes as
marked in (b); these planes are oblique cross-sections of the space shown in (a), parallel to the Vn=0 plane. On each
plane, the intersection with the Tn=0 plane (plane strainÐPS) is indicated by a bold line. Thin horizontal lines are inter-
sections with planes a and g. The elliptical and circular curves are intersections with surface b and with the vertical cylin-

der in (a), respectively. Further explanation in text.
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normalised numbers (Wn, An and Tn) or approximately
by classi®cation ®elds as shown in Fig. 5(b±d).

PROGRESSIVE DEFORMATION IN SHEAR
ZONE AND WALL ROCKS

Although classi®cation of model shear zones can be
based on ¯ow types, it is also important to know what
the e�ect of such ¯ow types and the orientation of
¯ow axes is on the accumulation of ®nite strain. In
natural shear zones, ¯ow parameters probably change
with time during progressive deformation, but little is

known about these changes. This section therefore pre-
sents simple modelling of progressive deformation in
the monoclinic shear zone types shown in Fig. 5 by
steady-state ¯ow. The results can serve as reference
curves for more complex deformation histories. In the
case of constant ¯ow parameters, the geometry of the
®nite strain ellipsoid is a simple function of ¯ow par-
ameters and time, as outlined below.

For reference purposes, the three possible ®nite
strain axis-orientations in a monoclinic shear zone are
labelled AI, AII and AIII: ®nite strain axes X, Y and Z
lie along these axes. Because of monoclinic ¯ow geo-
metry, AI is parallel to the aI±f±w axis of ¯ow (Fig. 2).

Fig. 5. (a) Diagram showing all possible types of isochoric (Vn=0) df- and ef-shear zones as a function of Wn and Tn or
An of ¯ow in the zones. Wn is plotted from 1 to 0 in two directions, since either of the apophyses d or e can be parallel
to the shear zone boundary. Schematic illustrations of the stretching behaviour of apophyses in di�erent parts of the dia-
gram are shown. Symbols are explained in the inset. (b±d) Three alternative ways of classifying shear zones using the
diagram shown in (a). SZÐshear zone. Shear zone types: SSÐsimple shear. TPÐtranspression. TTÐtranstension.

SHÐshortening. STÐstretching. Further explanation in text.
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The axial directions AII and AIII lie in the aII±aIII
plane of ¯ow such that AII lies between the ISA aII
and the apophysis e, and AIII normal to AI and AII

(Fig. 2). In non-coaxial progressive deformation, AII

and AIII rotate away from the ISA aII and aIII, respect-
ively, in the direction of the apophysis e as shown in
Fig. 2. For coaxial progressive deformation histories,
AII and AIII remain parallel to aII and aIII. sI, sII and
sIII are principal stretch values in directions AI, AII

and AIII which can be used to calculate strain ratios
RII-I (=sII /sI) and RI-III (=sI/sIII). These ratios can be
plotted on a Flinn-diagram in which the orientation of
the ®nite strain ellipsoid can be shown (Fig. 7; Flinn,
1978; Cruden, 1988). Based on the distribution of X, Y
and Z over AI, AII and AIII, the diagram can be sub-
divided into six main classes of ®nite strain. Since by
de®nition aII>aIII in model shear zones, only three
®nite strain classes in the upper right part of the dia-
gram can be realised in the shear zones (Fig. 7). These
classes have been labelled ZI, YI and XI after the ®nite
strain axis that lies parallel to direction AI.
Figure 8(a) illustrates the accumulation of ®nite

strain in model shear zones and their wall rocks as a

result of progressive deformation by steady-state ¯ow.
Results are shown for df or ef-model shear zones with
isochoric (Vn=0) ¯ow at Wn values of 1.0, 0.7 and 0.0
and Tn values of ÿ0.5, ÿ0.25, 0, 0.25 and 0.5 for each
Wn value (Fig. 8a). The calculations were made using
equations for strain accumulation presented in
Passchier (1997; equations (22)±(27)). For each ¯ow
type, a pair of curves is shown in Fig. 8(a), connected
by tie-lines which represent time-steps at regular inter-
vals. The solid arrow represents deformation in the
model shear zone; the open arrow deformation in a
model wall rock.

A coherent interface exists between the shear zone
and its wall rock, and the geometry of ¯ow in the
model wall rock depends on ¯ow in the shear zone.
The paths shown in Fig. 8(a) for progressive defor-
mation in the model wall rock are for isochoric coaxial
¯ow with two ISA, aI and either aII (for ef-shear
zones) or aIII (for df-shear zones), parallel to the shear
zone boundary. In mechanically realistic shear zones,
¯ow in the wall rock is likely to be non-coaxial with
the same shear sense as in the shear zone. The coaxial
progressive strain paths for the model wall rock in

Fig. 6. Wn±Tn diagrams similar to Fig. 5 but for non-isochoric ¯ow conditions (Vn$0). Two cross-sections through Wn±
An±Tn space as shown in Fig. 4(c) are given. Enlargement of the central sector of these diagrams at right shows that a
large number of shear zone types appear under these conditions which are not present for isochoric ¯ow in Fig. 5(a).

PSÐplane strain (Tn=0).
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Fig. 8(a) are meant as reference curves only; strain
paths for wall rocks of realistic shear zones may lie
somewhere between that of the model wall rock and
that of the shear zone.

The following observations can be made from
Fig. 8(a):

(1) The length of tie-lines in Fig. 8(a) represents the
distance in the Flinn-diagram separating ®nite strain
states in a shear zone and its wall rock. In the case of
isochoric progressive deformation as presented in
Fig. 8(a), these tie-lines are parallel to the plane-strain
(Tn=0) curve. At any time during progressive defor-
mation and for any Tn-value, maximum tie-line length
is reached for Wn=1 in the shear zone and a wall rock
that is undergoing coaxial progressive deformation
(Wn=0); non-coaxial progressive deformation in the
wall rock shortens the tie-lines, increasingly so as Wn

of ¯ow in the wall rock approaches Wn of ¯ow in the
shear zone. Thus, tie-line length at any instant during
progressive deformation is dependent on Wn, but inde-
pendent of Tn of ¯ow in the shear zone.

(2) Di�erences in ®nite strain magnitude between a
model shear zone and its wall rock depend on Wn and
Tn. Finite strain magnitude can be de®ned as a DFlinn-
value in the Flinn-diagram, i.e. as:

DFlinn �
����������������������������������������������������
logRIIÿI
ÿ �2� logRIÿIII

ÿ �2q
�7�

Curves of equal DFlinn±value are circles centred on the
origin of the Flinn-diagram of Figs 7 and 8. Since tie-

lines are parallel to the strain path for Tn=0 (Fig. 8a),

di�erences in DFlinn±value between a shear zone and

its wall rock in the case of isochoric ¯ow are highest

for simple shear (Wn=1) and plane strain (Tn=0).

Natural ductile shear zones are only recognised as

such if ®nite strain (DFlinn) in the shear zone signi®-

cantly exceeds that in the wall rock. Such a high strain

contrast therefore develops most e�ectively at high Wn

and low Tn values of ¯ow in the zone (Fig. 8a).

(3) The di�erence in two-dimensional ®nite strain

ratio (Rf) between a model shear zone and its wall

rock, measured parallel and normal to the displace-

ment direction (Fig. 3), depends on Wn but not on Tn,

An or Vn. Figure 9 shows two curves, for the AIIAIII-

and AIAIII-sections, respectively, which represent the

ratio of Rf between a model shear zone, and a wall

rock that deformed by coaxial ¯ow. Both are based on

a value of Rf=100 in the shear zone. The greatest

di�erence in two-dimensional ®nite strain between a

shear zone and its wall rock develops at high Wn num-

bers in the shear zone, culminating for simple shear.

For example, if we assume that in the AIIAIII-plane Rf

in the shear zone should be at least ®ve times that in

the wall rock for a shear zone to be recognisable, Wn

should be at least 0.9 (Fig. 9). Since asymmetric struc-

tures characteristic of shear zones will also show opti-

mal development at high Wn, very high Wn values

between 0.9 and 1 are a prerequisite for well-recognisa-

ble isochoric monoclinic shear zones. However, in

monoclinic model shear zones with volume change,

high ®nite strain ratios between shear zone and wall

rock can be reached at lower Wn values, as discussed

below.

(4) The symmetry axis for all curves in Fig. 8(a) is

the plane strain (Tn=0; RII-I=RI-III) line. Strain paths

can either stay within one of the three main ®nite

strain categories ZI, YI and XI (Figs 7 & 8) or pass

from one category to another (Fig. 8a; ®g. 7 in

Passchier, 1997). For such `cross-over' strain path,

there are two possibilities; cross-over from YI to ZI for

Tn<0, or from YI to XI for Tn>0 (Fig. 8a). The exact

conditions that lead to development of in-category

paths and cross-over paths are derived below.

(5) The longest principal strain axis, X, may be or-

thogonal in a model shear zone and its wall rock (e.g.

for Tn=0.25 at Wn=1 and Wn=0.7 in Fig. 8a). This

will occur especially at high Wn, small positive Tn and

low ®nite strain; such shear zones may have stretching-

or mineral-lineations normal to those in the wall rock.

Similarly, the XY-plane may be orthogonal in a model

shear zone and its wall rock (e.g. for Tn=ÿ 0.25 at

Wn=1 in Fig. 8a). This will occur especially at high

Wn, small negative Tn and low ®nite strain. Such shear

zones may have foliations normal to those in the wall

rock. If developed in natural shear zones, such con-

¯icting fabric orientations could be erroneously inter-

Fig. 7. Modi®ed Flinn-diagram in which the orientation of the ®nite
strain ellipsoid in shear zones can be plotted. Only strain classes to
the right of the bold line are realised in model shear zones as de®ned
in this paper; strain states in the wall rock might plot anywhere in
the diagram. Finite strain-classes are indicated by a small cartoon
showing the orientation of the ®nite strain ellipsoid with respect to
AI, AII and AIII (inset). XI , YI and ZI are speci®c orientations of the
®nite strain ellipsoid, named after the principal axis that lies along
AI. Distribution of domains of apparent constriction (AC) and
apparent ¯attening (AF) are indicated in the centre of the diagram.
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preted as unrelated structures belonging to separate
phases of deformation.

Strain accumulation with instantaneous volume change

If ¯ow is not isochoric, there are many possible
model lines that could be followed such as volume loss
in the shear zone only, or volume loss in the shear
zone compensated by volume gain in the wall rock.
The equations for strain accumulation presented in
Passchier (1997; equations (22)±(27)) can also be used
to model such progressive deformation with volume
change. Figure 8(b & c) gives some examples of pro-
gressive deformation with instantaneous volume loss

or gain in a shear zone and with isochoric ¯ow in the
model wall rock. The main di�erence with the patterns
in Fig. 8(a) is that the diagrams become asymmetric
and that signi®cant strain gradients between shear
zone and model wall rock are now also possible at
lower Wn values.

Boundaries of strain path domains

Strain paths of monoclinic model shear zones accu-
mulated by steady-state ¯ow can remain within one
strain category, or pass from one category to another
(Fig. 8; Passchier, 1997). The boundaries between cate-
gories can be found by investigation of the parent ¯ow

Fig. 8. Finite strain paths plotted in the Flinn-diagram of Fig. 7 for progressive deformation by invariable ¯ow par-
ameters. Diagrams are shown for three di�erent Vn-values, and at each Vn-value for three Wn-values: (a) Vn=0 (isocho-
ric ¯ow); (b) Vn=ÿ 0.5 (instantaneous volume decrease); (c) Vn=0.5 (instantaneous volume increase). Each diagram
shows strain paths for ®ve di�erent Tn values (as indicated by boxes in the top-left diagram). Solid arrowsÐstrain ac-
cumulation in a shear zone. Open arrowsÐstrain accumulation in a model wall rock by coaxial progressive deformation,
and connected to the shear zone by a coherent boundary. Tie-lines connecting both curves in (a) are spaced at constant
strain intervals of St=5 (Passchier, 1997) in the shear zone during progressive deformation. In (b) and (c) only tie lines
for total strain are shown. Grey ®elds in the insets of (a) and in (b) and (c) represent domains where strain paths of
shear zones can cross over from one ®nite strain-class of Fig. 7 to another. Shear zone strain paths that lie outside these

grey ®elds will remain within their ®nite strain class.
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types. In the ¯ow geometry chosen here with aII>aIII,
the longest ®nite strain axis, X, will be either in
position AI, parallel to the apophysis f (f = aI), or in
position AII; this depends on the magnitude of the
stretching rates along the ISA aI, aII and aIII and the
apophysis e during progressive deformation.
If aI>aII, X accumulates in AI-position in all cases.

The limiting condition is aI=aII or in terms of dimen-
sionless numbers using equations (2)±(4);

2Tn ÿ An � 1 �8a�
or using Vn :

3Tn ÿ Vn � 1 and 2Vn ÿ 3An � 1 �8b�
In the absence of instantaneous volume change when
Vn=0, this reduces to:

Tn � 1=3 and An � ÿ1=3 �8c�

If aII>aI, the situation is more complex and
depends on the magnitude of the apophysis e and
therefore on Wn since:

e � aII � aIII
2

� aII ÿ aIII
2

����������������
1ÿW2

n

q
�9�

This equation can be derived from a Mohr circle con-
struction for ¯ow (Passchier, 1991). If e>aI, material
lines in the f±e plane will rotate towards the apophysis
e. In this case, X will lie in position AII and rotate
towards the apophysis e for any stage of progressive
deformation. The limiting condition is aI=e or:

2Tn ÿ An �
����������������
1ÿW2

n

q
�10a�

or using Vn:

3Tn ÿ Vn �
����������������
1ÿW2

n

q
and 2Vn ÿ 3An �

����������������
1ÿW2

n

q
�10b�

or for isochoric ¯ow when Vn=0:

Tn � 0:33
����������������
1ÿW2

n

q
and An � ÿ0:33

����������������
1ÿW2

n

q
�10c�

If aII>aI>e, the situation depends on ®nite strain.
The principal ®nite strain axis X lies in position AII

and rotates towards the apophysis e at low ®nite

strain, but with progressive deformation, X can switch
from position AII to AI through an intermediate stage
of uniaxial ¯attening. This is a path where the curve of

progressive strain accumulation crosses from one strain
category to another in Fig. 8. In terms of attractors
(Passchier, 1997), either e or f can be X-attractors

under conditions outlined above.

In Wn±An±Tn space (Fig. 4a), equations (8) describe
a planar surface dipping towards the left (Fig. 4a;
plane a). Equations (10) describe an oblique cylindrical

surface plunging towards the left (Fig. 4a; surface b).
This surface is tangential to plane a at Wn=0 since in
that case, equations (10) equal equations (8). In other

words, the transitional domain where `cross-over' of
®nite strain axes may occur during progressive defor-
mation does not exist for coaxial ¯ow types. Flow at

speci®c rates of instantaneous volume change plot on
planes dipping towards the right in Fig. 4(a), and these
are shown in Fig. 4(b & c).

In a way similar to that sketched for X, the orien-
tation of the XY plane of the ®nite strain ellipsoid

depends on the magnitude of stretching rates along the
ISA aI, aII and aIII and the apophysis d. Since aII>aIII,
the XY plane can be either the AIAII- or the AIIAIII-

plane. If aIII>aI, the XY plane is the AIIAIII-plane
throughout the deformation history. The limiting con-
dition is aI=aIII or in terms of normalised numbers:

An ÿ 2Tn � 1 �11a�
or using Vn:

Vn ÿ 3Tn � 1 and 3An ÿ 2Vn � 1 �11b�
In the absence of instantaneous volume change when
Vn=0, this reduces to:

Tn � ÿ1=3 and An � 1=3 �11c�
if aI>aIII, the situation is more complex. With pro-
gressive deformation, one of the ®nite strain axes

rotates towards the apophysis e. If the XY-plane co-
incides with the AIIAIII-plane, Z lies along AI. If the
XY-plane is the AIAII-plane, Z rotates towards e*, a

vector normal to the apophyses e and f. The stretching
rate e* of a material line instantaneously parallel to e*

Fig. 9. Diagram showing the e�ect of Wn on the di�erence in ®nite
strain ratio (R) between a shear zone and its model wall rock during
progressive deformation by steady-state ¯ow. Two R-values are
shown in each case: RII-III and RI-III. Ratios RII-III and RI-III in shear
zone (SZ) and model wall rock (WR) are plotted against Wn for
RII-III (SZ) = 100. Signi®cant di�erences in R between a shear zone
and its wall rock only occur at high Wn. The result is independent of
An, Tn and Vn, provided that these are equal in shear zone and wall

rock.
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has the same magnitude as the stretching rate d along

the apophysis d in all monoclinic ¯ow types, as can be

deduced from a Mohr circle construction for ¯ow

(Passchier, 1991). If aI>e*, the XY-plane coincides per-

manently with the AIAII-plane. If e*>aI>aIII, a switch

in orientation of XY from the AIAII- to the AIIAIII-

plane is possible with progressive deformation. The

limiting condition is aI=e*. Therefore:

aI � e� � d � aII � aIII
2

ÿ aII ÿ aIII
2

����������������
1ÿW2

n

q
: �12�

Equation (12) is derived from a Mohr circle construc-

tion for ¯ow and can be rewritten as:

An ÿ 2Tn �
����������������
1ÿW2

n

q
�13a�

or using Vn:

Vn ÿ 3Tn �
����������������
1ÿW2

n

q
and 3An ÿ 2Vn �

����������������
1ÿW2

n

q
�13b�

or for isochoric ¯ow when Vn=0:

Tn ÿ 0:33
����������������
1ÿW2

n

q
and An � 0:33

����������������
1ÿW2

n

q
: �13c�

Equations (13) de®ne the same cylindrical surface b in

Fig. 4(a) as equations (10); equations (11) de®ne a

plane g in Fig. 4(a). The intersection of planes a and g
and surface b with the Vn=0 and other constant Vn

planes are shown in Fig. 4(c). Based on equations (8),

(10), (11) and (13), limiting curves can be calculated for

progressive deformation histories of shear zones that

remain within one ®nite strain category of Fig. 7, or

cross over. These limiting curves are shown in Fig. 8(a)

(insets) for isochoric ¯ow. In terms of attractors
(Passchier, 1997), either e* or f can be Z-attractors
under conditions outlined above.

If deformation in a model shear zone accumulates
by isochoric steady state ¯ow, the dependence of ®nite
strain geometry and orientation on ¯ow parameters
can be shown on the plane of isochoric ¯ow types in
Wn±An±Tn space (Fig. 10a). Boundaries are de®ned by
the intersection of planes a and g and surface b of
Fig. 4(a) with the plane of isochoric ¯ow types. An im-
portant di�erence exists between laterally constric-
tional and plane strain shear zones on the one hand,
and laterally expansional zones on the other (Figs 5b
& 10a, b). Transtension (TT), stretching (ST), shorten-
ing (SH) and simple shear (SS) shear zones lie in the
ZI and YI ®elds, which implies that X develops in pos-
ition AII in the AIIAIII-plane which also contains the
displacement direction (Figs 3 & 10b). Small variations
in Wn or An will not in¯uence this orientation with the
exception of simple shear, where the ¯ow type may
move into the ®eld of XI-class development with a
small increase in Tn (Fig. 10a & b). In fact, simple
shear ¯ow is a singularity that is strongly sensitive to
small deviations from ideal conditions.

Transpression (TP) and other laterally expansional
shear zone types (Fig. 5b) lie in the XI- or YI-®elds,
depending on ¯ow conditions (Fig. 10a). In these shear
zones, X may develop in either of two orientations; in
position AII, or in position AI normal to the displace-
ment direction (Figs 10b & 11; Sanderson and
Marchini, 1984; Fossen and Tiko�, 1993; Robin and
Cruden, 1994; Krantz, 1995).

Similar e�ects as described above for X exist for the
XY plane of ®nite strain (Figs 10b & 11). Laterally

Fig. 10. (a) Diagram as used in Figs 4(c) and 5 in which isochoric ¯ow types in shear zones can be plotted as a function
of Tn and Wn. Shading and abbreviations (e.g. XI, ZI) refer to the distribution of ®nite strain classes (Fig. 7) that develop
through progressive deformation for steady-state ¯ow in the shear zone. Shear zone types: SSÐsimple shear. TPÐtran-
spression. TTÐtranstension. SHÐshortening. STÐstretching. (b) Subdivision of the Tn±Wn diagram of (a) into ®elds
where X and XY have equal orientation with respect to AI-, AII- and AIII-axes. (c) Stability diagram of shear zone types.
All ef-shear zone types in the dark domain are stable; those outside the dark domain, and all df-shear zone types, are

metastable.
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expansional shear zone types belong to categories YI

and XI, and the XY plane coincides with the AIAII-
plane (Figs 10b & 11). Laterally constrictional shear
zones may belong to categories YI or ZI and the XY
plane is either the AIAII-plane, or the AIIAIII-plane
normal to the shear zone boundary.

Strain classes and instantaneous volume change

Figure 4(c) shows the distribution of ®elds of ®nite
strain categories derived from non-isochoric ¯ow types
(Vn$0). The obliqueness of the di�erent boundary sur-
faces in Wn±An±Tn space discussed above causes a
complex interference in constant Vn sections. With a
change in Vn, the boundaries between XI, YI and ZI

domains and the `transpression±transtension circle'
de®ned by equation (6), `shift' with respect to the
plane strain line (PS in Fig. 4c).

Orientation of ®nite strain axes in model shear zones

The orientation of ®nite strain axes in model df- and
ef-shear zones depends on the orientation of the X- or
Z-attractors (Passchier, 1997) with respect to shear
zone boundaries, and ®nite strain. The orientation of
the attractors depends not only on ¯ow parameters,
but also on the nature of the apophyses that are paral-
lel to the shear zone boundary during progressive de-
formation (Fig. 11). In ef-shear zones, the ®nite strain
axis in AII position rotates towards the shear zone
boundary, since the attractor e is parallel to the
boundary. In df-shear zones, however, the attractor e
is oblique to the shear zone boundary and AII remains
oblique to the boundary, even at high ®nite strain
(Fig. 11).

DISCUSSION

In the previous sections, a purely theoretical treat-
ment was given of all possible types of monoclinic
¯ow, and the types of homogeneous progressive defor-
mation that would accumulate as a result of steady-
state ¯ow. Although df- and ef-monoclinic shear zones
are convenient in modelling, there is no reason to
believe that natural shear zones must all develop in
this way (cf. Jiang and White, 1995; Jiang and
Williams, 1998). In natural shear zones with deforming
wall rocks ¯ow may be inhomogeneous or, if it is ap-
proximately homogeneous in a shear zone segment, it
can have a triclinic ¯ow symmetry in which w is not
parallel to one of the ISA (Jiang and Williams, 1998).
One situation where triclinic ¯ow symmetry could be
envisaged is where shear zones develop in a pre-exist-
ing relatively weak layer or lens bounded by a stronger
wall rock, e.g. a gypsum layer bounded by sandstone
beds. However, if a new shear zone develops with
deforming wall rocks in a homogeneous volume of

rock, e.g. a granite mylonite within a granite batholith,
its orientation is determined by the local stress ®eld,
and principal stress axes are likely to be symmetrically
arranged with respect to shear zone boundaries, both
in the shear zone and in the wall rock. This will result
in monoclinic ¯ow in the shear zone and a monoclinic
shear zone symmetry, unless the regional tectonic
framework changes orientation during shear zone
development. Many shear zones show monoclinic fab-
ric symmetry both in the zone and in relation with fab-
rics in the wall rock, which suggests that monoclinic
¯ow must be relevant for many ductile shear zones
with deforming wall rocks. However, triclinic ¯ow is
theoretically possible in ductile shear zones and its rel-
evance in nature should be investigated. Meanwhile, a
simple model of steady-state monoclinic ¯ow and pro-
gressive deformation can serve as a framework against
which natural fabrics can be tested, and can also be
used in laboratory and computer modelling of shear
zones. In the next sections, some possible consequences
of di�erent types of monoclinic ¯ow for natural shear
zones are discussed.

XI-, YI- and ZI-type shear zone segments

Theoretical `model shear zones' as discussed in this
paper with planar, parallel contacts to the wall rock
and homogeneous ¯ow in the zone di�er from natural
shear zones in that these normally have a lateral gradi-
ent in ¯ow type from centre to shear zone tips. Model
shear zones as treated in this paper, however, can be
used to describe the behaviour of small segments of
natural zones in which ¯ow is approximately homo-
geneous.

Model shear zone types can be subdivided according
to ¯ow parameters (Fig. 5b & c), but also according to
®nite strain geometry into XI-, YI- and ZI-type shear
zones (Fig. 11). The latter classi®cation is obviously of
more practical use for natural shear zones than one
based on ¯ow types. Many segments of natural shear
zones with a monoclinic fabric geometry can therefore
be classi®ed into XI-, YI- or ZI-type.

Shape fabric geometry need not be identical to ®nite
strain geometry in polyphase natural shear zones
(Freeman and Lisle, 1987). For convenience, shape
fabric geometry classes are assumed to mimic ®nite
strain geometry classes in the following sections on
natural shear zones, i.e. the planar shape fabric ele-
ment is a foliation parallel to XY and the linear shape
fabric element (stretching lineation) is parallel to X.

Unstable shear zone boundaries

The boundaries of model shear zones described in
this paper are parallel to ¯ow apophyses f and either d
or e and do not rotate with respect to the external
reference frame and ISA. It is important, however, to
investigate if such shear zone boundary orientations
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are actually stable for small deviations from ideal par-
allelism with ¯ow apophyses.
Passchier (1997) has shown that ¯ow apophyses can

be attractors, transits or repulsors of material lines.
However, material planes will only be in a perma-
nently stable position if they are parallel to a pair of
apophyses that does not include a repulsor apophysis;
in that case, small deviations of the material plane
from parallelism with the apophyses will not be ampli-
®ed, but the plane will tend to return to parallelism.
Material planes parallel to an apophysis pair that
includes a repulsor will be in metastable position; any
small deviation from parallelism will be ampli®ed.

In monoclinic ¯ow types with aII>aIII , the repul-
sor-apophysis is d if aI>d and f if d>aI, since aI =f
(Passchier, 1987). This implies that the only two stable
positions of material planes are the d±e (or AIAII-)
plane if d>aI, and the e±f plane if aI>d. The limiting
condition, aI=d is given by equation (13). Material
planes parallel to the d±f plane are therefore never in a
stable position, and the same applies to those parallel
to the e±f plane if d>aI. This applies to shear zone
boundaries as well as other material planes such as fo-
liations in a shear zone.

For isochoric ¯ow, only shear zone types plotting in
the dark sector of the Wn±Tn-diagram of Fig. 10(c) are

Fig. 11. Diagram showing the e�ect of the orientation of ¯ow apophyses and of Wn on ®nite strain geometry and fabric
orientation in a developing shear zone segment for the three main ®nite strain classes or shear zone types XI, YI and ZI.
Each shear zone type is shown by a block diagram in which the shape and orientation of the ®nite strain ellipsoid and
the orientation of planar (S) and linear (L) shape fabric elements are indicated. L is shown as bold lines on S. The front
of each block diagram, the AIIAIII-plane, is the vorticity pro®le plane (VPP) and shows asymmetric structures, schemati-
cally indicated by a mantled porphyroclast; AIAII- and AIAIII-planes show only symmetric structures. The inclination of
the ®nite strain ellipsoid and of S and L with respect to the model shear zone boundary depends on Wn and on the

nature of the apophyses that lie along the shear zone boundary.
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stable monoclinic shear zone types; all other types are
in a metastable position. Figure 5 shows that stable
types all classify as thinning ef-type shear zones, which
include transpression-, stretching- and simple shear
zones. Thickening shear zones or df-type zones are
metastable. Simple shear is a special ¯ow type since
small deviations of ¯ow parameters towards negative
Tn values or to df-type shear zones geometry may
cause instability (Fig. 10c).
In stable monoclinic shear zone types, small devi-

ations of the boundary from parallelism with the apo-
physes will not amplify but diminish, and such
boundaries are therefore self-stabilising. If the shear
zone boundary is in a metastable orientation, any
small deviation from exact parallelism will cause the
boundary to rotate away from the apophyses. The
result could be a mere rotation of a foliation or of
shear zone boundaries in the external reference frame,
but on a larger scale it could also lead to folding of
these structures. Note, however, that in all these cases
the symmetry of ¯ow and progressive deformation in
the zone remains monoclinic, i.e. the eigenvectors f
and aI remain parallel to w.
If ¯ow was steady-state during development of a

shear zone, the classi®cation of Fig. 10(a) would
apply, and the ®eld of stable shear zones would
include XI and YI shear zone types, but no ZI types.

Inhomogeneous ¯ow in natural shear zones

If ¯ow parameters vary laterally over a ductile shear
zone during progressive deformation, gradients can
develop from one shear zone type to another. For
example, if bulk progressive deformation in a shear
zone is of plane strain type (Tn=0), laterally linked
variations of Tn may occur in adjacent domains, e.g. if
the shear zone is locally thinning and stretching paral-
lel to the apophysis f, but thickening and shortening
parallel to f in adjacent domains (Fig. 12). If this
results in a transition from YI- to XI-shear zone seg-
ments (Fig. 11), stretching lineations are locally or-
thogonal to those in the remainder of the zone

although the vorticity vector has the same orientation
throughout (cf. Fossen et al., 1994; Tiko� and
Teyssier, 1994; Fig. 12). The transition zone would
have no stretching lineation but would be characterised
by pure ¯attening. This structural transition could be
mistaken for the e�ect of two deformation phases.
Alternatively, a YI-shear zone segment may laterally
grade into a ZI-segment. This may occur through a
transition zone with linear fabrics (Fig. 12) or, if the
ZI-shear zone develops in a foliated medium, through
a zone of cylindrical folds with axes parallel to the
stretching lineation (cf. Passchier et al., in press). Such
folds are expected to show increasing tightness towards
the ZI-shear zone segment where they can be isoclinal
and even rootless.

Another interesting gradient in ¯ow parameters over
a shear zone may occur if one of the wall rocks is
stretching more rapidly than the other in the displace-
ment direction. This may lead to a lateral change in
Wn, and even a lateral swap in shear sense along a
shear zone (cf. Means, 1990). In the shear zone fabric,
shear sense swap may occur through a lateral decrease
in the asymmetry of fabric elements and a reversal of
the geometry of shear sense indicators over a zone
with symmetric fabrics. This `symmetric transition
zone' could have foliations and lineations that are
similar to those in parts of the zone with asymmetric
fabrics. The symmetric transition zone may even shift
along the shear zone with time, creating an overprint
of two shear senses in some parts of the zone. Such an
overprint could be interpreted erroneously as an e�ect
of shear zone reactivation by a second tectonic phase.

Shear sense indicators in monoclinic shear zones

Although precise geometries will have to be deter-
mined from modelling studies, a brief outline is given
here of how shear sense indicators in general monocli-
nic shear zones may deviate from those in simple shear
zones.

In simple shear zones, asymmetric structures that
are commonly used to determine sense of shear such
as mantled porphyroclasts, shear band cleavage and
mica-®sh are best observed on sections normal to the
vorticity vector because of their monoclinic overall
symmetry. In simple shear zones, this section is parallel
to X and normal to the XY-plane or ®nite strain. In
practice, sections are therefore cut parallel to stretch-
ing- or mineral-lineations, and normal to the foliation
in the shear zone.

In general monoclinic shear zones where ¯ow was
not simple shear, asymmetric structures can also be
expected to be best developed in a section normal to
the vorticity vector (Hanmer and Passchier, 1991).
Robin and Cruden (1994) suggested the general term
`vorticity pro®le plane' (VPP) for such sections and
this is the section that has to be found in outcrop to
determine displacement direction and sense of shear

Fig. 12. Cartoon showing the possible lateral variation in shear zone
types XI, YI and ZI in a zone with strong lateral variation in Tn

during progressive deformation.

Monoclinic model shear zones 1133



(Fig. 11). In the terminology used in this paper, the
VPP is always the AIIAIII-plane of ®nite strain.
If shape fabric geometry coincides with ®nite strain

geometry, the relation between linear (L) and planar
(S) shape fabric elements and the VPP are as follows
in XI-, YI- and ZI-shear zones (Figs 10 & 11);

1. XI-shear zones: the VPP lies normal to L and S.
This is the case for shear zones that form at high
Tn values such as some types of transpression

2. YI-shear zones: the VPP lies parallel to L and nor-
mal to S. This is the case for simple shear, shorten-
ing and stretching shear zones.

3. ZI-shear zones; the VPP lies parallel to L and S.
This is the case for shear zones that would form at
low Tn values such as some types of transtension.

Shear sense indicators in YI-shear zones have been
treated in many publications and are familiar to most
geologists (Simpson and Schmid, 1983; Hanmer and
Passchier, 1991; Simpson and DePaor, 1993). One may

speculate what type of shear sense indicators could

develop in other shear zone types, and which problems

could occur with their recognition.

In the literature, most attention has been paid to the

in¯uence of Wn on the geometry of shear sense indi-

cators (Passchier, 1988; Tiko� and Fossen, 1995;

Passchier and Trouw, 1995, Chapter 8.3). The main

e�ect is a decrease in the asymmetry of the structure

with decreasing Wn (Passchier and Trouw, 1995).

Besides Wn, Tn can also be expected to have a strong

in¯uence on the three dimensional shape of shear sense

indicators, especially in XI- and ZI-shear zones; in

VPP sections through shear sense indicators in such

shear zones, some will show pronounced asymmetry as

in YI-zones while others show weak or no asymmetry.

Figure 13 shows some examples of the problems that

may be encountered.

The symmetry of preferred orientation patterns of

crystallographic axes are a favoured shear sense indi-

Fig. 13. (a) Orientation of fabric elements in the three main shear zone types. In this example, ®nite strain geometry
equals shape fabric geometry. LÐlinear shape fabric. SÐplanar shape fabric. (b) Tentative prediction of low-tempera-
ture quartz c-axis preferred orientation patterns that might develop in shear zone types shown in (a). Each pattern is
shown in two orientations. (c & d) Tentative prediction of the shape of (c) mantled porphyroclasts and (d) C'-type shear

band cleavage transecting the main foliation.
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cator. Patterns for ZI- and XI-shear zones are likely to
be very di�erent from the familiar ones of YI-shear
zones. The actual patterns are di�cult to predict and
have to be modelled, but the overall symmetry for
quartz c-axes and low-T deformation could be as
shown in Fig. 13(b). Notice that if these patterns are
viewed in the standard reference orientation in a
stereogram with vertical foliation S and horizontal
lineation L, an unusual asymmetry result that could
easily be misinterpreted as being due to polyphase de-
formation or erroneous sectioning oblique to the
desired direction (Fig. 13b).
In YI-shear zones, mantled porphyroclasts are im-

portant shear sense indicators that develop by recrys-
tallisation in the mantle of a rigid core mineral or
mineral aggregate, and ductile deformation of the
mantle around the rigid core to an asymmetric shape
(Passchier and Trouw, 1995). In XI-shear zones, the
mantle will be elongated in the AI-direction (Figs 2 &
13c), but in VPP (AIIAIII) sections a similar asymmetry
as in YI-shear zones, albeit with shorter wings, can be
expected. In ZI-shear zones, however, the wings will lie
almost completely in the foliation (AIIAIII) plane, and
the asymmetry is probably weak or even absent
(Fig. 13c).
C'-type shear band cleavage develops in many YI-

shear zones that have a strong foliation, probably by
¯ow partitioning in response to the strong planar an-
isotropy (Passchier and Trouw, 1995). The geometry
will be as shown in Fig. 13(d), centre. In XI-shear
zones, shear bands can be expected to show a more
planar geometry because of the extension parallel to
AI, but since foliations will tend to develop in the
AIAII-plane, shear band cleavage can be expected to
develop. In the VPP, shear bands in XI-shear zones
will therefore have a similar geometry to that in YI-
shear zones. In ZI-shear zones, however, the foliation
tends to develop normal to AI and to the vorticity vec-
tor; in this orientation, it seems unlikely that strong
shear bands can develop. The most spectacular C'-type
shear band cleavage in shear zones has been reported
from shear zones in an extensional tectonic setting
(Passchier, 1991), and it is quite conceivable that such
zones are in fact elongating shear zones (Fig. 5d).

Analysis of natural monoclinic shear zones

If a volume of mylonite with a straight planar and
linear shape fabric has shear sense indicators with a
symmetry axis normal or parallel to elements of this
fabric, they may have developed by monoclinic ¯ow.
In that case, they could be analysed as follows. First,
rock faces are identi®ed on which fabric elements with
monoclinic symmetry, such as shear sense indicators,
are best developed. These rock faces will be close to
the orientation of the VPP, and the symmetry axis is
normal to this plane. From the orientation of the VPP
with respect to X and XY in the shear zone fabric, the

zone or zone segment can be classi®ed as XI-, YI- or
ZI-type.

Natural high-strain planar ductile shear zones
reported in the literature are mostly YI-zones, but XI-
zones, with the XY-plane at a small angle to the shear
zone boundary have been reported, amongst others,
from the Canadian shield (Hudleston et al., 1988;
Robert, 1989; Robin and Cruden, 1994), the Canadian
Cordillera (McDonough and Simony, 1989), Sweden
(Talbot and Sokoutis, 1995), the Kola peninsula
(Alekseev et al., 1996), NE-Spain (Carreras and
Druguet, 1994; Druguet et al., 1997) and the Sierra
Nevada Batholith, California (Tiko� and Greene,
1997). YI- and XI-shear zones correspond exactly to
the model ef-shear zone geometries that would form
from ¯ow types that plot in the stable sector of
Fig. 10(c). ZI-shear zones (Fig. 11), which can theoreti-
cally be formed by compression along the vorticity
vector (Fig. 7) have apparently not been recorded as
natural shear zones, except for a possible case in west
Greenland (Passchier et al., in press). This may be due
to the fact that ZI-shear zones plot in the metastable
®eld of Fig. 10(c). ZI-zones may not develop as high-
strain planar shear zones, but only as minor domains
within shear zones of another type, e.g. associated
with intense folding of foliations parallel to the linea-
tion. If ZI-shear zone types exist in nature they will
also be di�cult to recognise in the ®eld; foliations
develop normal to the vorticity vector, and shear sense
indicators are therefore expected to be weakly devel-
oped.

Stretching and mineral lineations and shear sense in-
dicators in ductile shear zones are important tools to
determine relative movement direction of wall rocks
(Simpson and Schmid, 1983; Hanmer and Passchier,
1991) and large-scale tectonic transport directions (e.g.
Shackleton and Ries, 1984). It is therefore important
to correctly classify monoclinic shear zone types into
one of the categories mentioned above. If ZI- or XI-
shear zones are mistaken for YI-shear zones, rock-sec-
tions other than the AIIAIII-plane will be assumed to
represent the VPP. As a result, the displacement direc-
tion of the shear zone can be erroneously interpreted
to lie orthogonal to the true direction. Another prob-
lem is that the monoclinic symmetry axis of the fabric
may be contained within the plane of section (Fig. 11).
Consequently, the fabrics that are found will be all
symmetric, and the shear zone may be dismissed as `a
useless one' without clear shear sense indicators, or it
may locally give con¯icting information.

The angle between X or the XY-plane in a shear
zone and the shear zone boundary may be used to dis-
tinguish natural ef- or df-monoclinic shear zones. In
ef-shear zones, the fabric in the highest-strain domains
of the zone approaches parallelism with the shear zone
boundary; simple shear is a well-known example
(Fig. 11). However, if df-shear zones exist in nature,
the fabric in the highest-strain domains will approach
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a steep orientation, oblique to the shear zone bound-
ary and corresponding to the orientation of the attrac-
tor in the AIIAIII-plane (Fig. 11).

CONCLUSIONS

1. Flow geometry in monoclinic model shear zones
can be completely described by three kinematic
numbers Wn, Tn and An. The published model
shear zone geometries such as simple shear-, trans-
pression-, transtension-, shortening- and stretching
shear zones are only a few of a range of possible
types.

2. Progressive deformation by steady-state monoclinic
¯ow can produce three types of shear zones, classi-
®ed by ®nite strain geometry and orientation; XI-,
YI- and ZI-type. YI shear zones, the standard type,
have the strain geometry of simple shear zones; XI

zones have X parallel to the vorticity vector, and ZI

zones have XY normal to the shear zone boundary.
In some cases a switch from YI- to XI- or ZI-shear
zone type is possible with progressive deformation.
Confusion of ZI or XI zones for standard YI shear
zones may cause errors in the reconstruction of
sense of shear and direction of tectonic transport.

3. Gradients in ¯ow parameters within a shear zone
may cause lateral gradients in shear zone type (YI,
XI or ZI).

4. Only a small part of the geometrically possible
monoclinic model shear zone types are expected to
be stable, including some YI- and XI- but no ZI-
types. Natural shear zone types described in the lit-
erature ®t within the predicted domain of stable
monoclinic shear zones, which suggests that natural
metastable shear zone types may not exist, or do
not develop into easily recognisable high-strain pla-
nar shear zones.
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